Komparasi Algoritma Klasifikasi Machine Learning Pada Analisis Sentimen Film Berbahasa Indonesia
Abstract
Abstrak: Analisa Sentimen adalah proses yang bertujuan membedakan antara polarita diantara tiga harga yaitu positif, negatif dan netral. Opini publik adalah sumber informasi pentingyang dibutuhkan dalam pengambilan keputusan sesorang terhadap suatu produk. Saat ini, opinikonsumen terhadap pengalaman suatu produk semakin meningkat melalui media online. Untukmembaca opini-opini ini membutuhkan waktu yang banyak, tetapi jika hanya mengambil opinidalam jumlah yang sedikit dapat menimbulkan bias informasi. Algoritma Klasifikasi sepertiNaïve Bayes (NB), Support Vector Machine (SVM), dan C.45 dapat digunakan peneliti untuktujuan melakukan analisa sentimen dari opini suatu produk film. Berdasarkan hal ini, dalampenelitian ini dilakukan perbandingan dari tiga algoritma tersebut untuk mendapatkan tingkatpengetesan data yang paling tinggi. Dari penelitian ini didapat kesimpulan bahwa algoritmaNaïves Bayeslah yang mendapatkan tingkat yang paling tinggi. Setelah dilakukan kombinasiantara algoritma Naïve Bayes dan Algoritma Genetika dengan seleksi fitur untuk meningkatkantingkat akurasi dari Naïve Bayes classifier. Evaluasi selesai dilakukan dengan menggunakanmetode 10 fold cross validation. Akurasi dari tingkat pengukuran diukur dengan menggunakanconfussion matrix dan kurva ROC. Hasil akhir yang didapat dari klasifikasi text yang merupakanpenggabungan dari opini positif dan negatif menunjukan terjadi peningkatan dalam hal akurasisebesar 73 sampai dengan 80 persen pada algoritma Naïve Bayes.Kata Kunci: Algoritma Genetika, Analisa Sentimen, Machine, C4.5, Naïve Bayes, Opini,Support Vector
Abstract: Sentiment analysis is the process aiming to determine whether the polarity of atowards the positive, negative or neutral. Public opinion is an important source in the decisionmakingpersontoaproduct.Nowadaysconsumersareincreasinglymakingtheiropinionsand
experiencesonline.Readingthoseopinionsaretime-consuming,but,ifonlyfewopinionswere
read,
the evaluation would be biased. Classification algorithms such as Naive Bayes (NB),Support Vector Machine (SVM), and C4.5 were proposed by many researchers to be used insentiment analysis of movie opinions. Therefore, in this study will be to compare the third is toget agorima agoritma where most superior in the test data. So Naive Bayes algorithm generatedthe most superior. After the Naive Bayes algorithm will be combined with genetic algorithmfeature selection in order to improve the accuracy of Naive Bayes classifier. The evaluation wasdone using 10 fold cross validation. While the measurement accuracy is measured by theconfusion matrix and ROC curves. This research resulted in text classification in the form of apositive or negative opinions Indonesian language film. The results showed an increase in the accuracy of Naive Bayes 73.00% to 80.50%. Keywords: C4.5, Genetic Algorith,.Sentimetn Analysis, Naive Bayes, Opinion, Support VectorMachine.
References
Basari ASH, Hussin B, Ananta IGP, Zeniarja J. 2013. Opinion Mining of Movie Review using
Hybrid Method of Support Vector Machine and Particle Swarm Optimization. Procedia
Eng. 53: 453–462.
Kerami D. 2004. Kajian Kemampuan Generalisasi Support Vector Machine Dalam Pengenalan
Jenis Splice Sites Pada Barisan Dna. 8: 89–95.
Kontopoulos E, Berberidis C, Dergiades T, Bassiliades N. 2013. Ontology-based sentiment
analysis of twitter posts. Expert Syst. Appl. 40: 4065–4074.
MartÃn-Valdivia M-T, MartÃnez-Cámara E, Perea-Ortega J-M, Ureña-López LA. 2013. Sentiment
polarity detection in Spanish reviews combining supervised and unsupervised approaches.
Expert Syst. Appl. 40: 3934–3942.
Marwana. 2010. Algoritma c4.5 untuk simulasi prediksi kemenangan dalam pertandingan
sepakbola. 53–58.
Medhat W, Hassan A, Korashy H. 2014. Sentiment analysis algorithms and applications: A
survey. Ain Shams Eng. J.
Moraes R, Valiati JF, Gavião Neto WP. 2013. Document-level sentiment classification: An
empirical comparison between SVM and ANN. Expert Syst. Appl. 40: 621–633.
Nugroho AS, Witarto AB, Handoko D. 2003. Support Vector Machine.
Reyes A, Rosso P. 2012. Making objective decisions from subjective data: Detecting irony in
customer reviews. Decis. Support Syst. 53: 754–760.
Sunjana. 2010. Klasifikasi Data Nasabah Sebuah Asuransi. 2010.
Wu J, Pan S, Zhu X, Cai Z, Zhang P, Zhang C. 2014. Self-adaptive attribute weighting for Naive
Bayes classification. Expert Syst. Appl. 42: 1487–1502.
Zhang W, Gao F. 2011. An Improvement to Naive Bayes for Text Classification. Procedia Eng.
15: 2160–2164.
Hybrid Method of Support Vector Machine and Particle Swarm Optimization. Procedia
Eng. 53: 453–462.
Kerami D. 2004. Kajian Kemampuan Generalisasi Support Vector Machine Dalam Pengenalan
Jenis Splice Sites Pada Barisan Dna. 8: 89–95.
Kontopoulos E, Berberidis C, Dergiades T, Bassiliades N. 2013. Ontology-based sentiment
analysis of twitter posts. Expert Syst. Appl. 40: 4065–4074.
MartÃn-Valdivia M-T, MartÃnez-Cámara E, Perea-Ortega J-M, Ureña-López LA. 2013. Sentiment
polarity detection in Spanish reviews combining supervised and unsupervised approaches.
Expert Syst. Appl. 40: 3934–3942.
Marwana. 2010. Algoritma c4.5 untuk simulasi prediksi kemenangan dalam pertandingan
sepakbola. 53–58.
Medhat W, Hassan A, Korashy H. 2014. Sentiment analysis algorithms and applications: A
survey. Ain Shams Eng. J.
Moraes R, Valiati JF, Gavião Neto WP. 2013. Document-level sentiment classification: An
empirical comparison between SVM and ANN. Expert Syst. Appl. 40: 621–633.
Nugroho AS, Witarto AB, Handoko D. 2003. Support Vector Machine.
Reyes A, Rosso P. 2012. Making objective decisions from subjective data: Detecting irony in
customer reviews. Decis. Support Syst. 53: 754–760.
Sunjana. 2010. Klasifikasi Data Nasabah Sebuah Asuransi. 2010.
Wu J, Pan S, Zhu X, Cai Z, Zhang P, Zhang C. 2014. Self-adaptive attribute weighting for Naive
Bayes classification. Expert Syst. Appl. 42: 1487–1502.
Zhang W, Gao F. 2011. An Improvement to Naive Bayes for Text Classification. Procedia Eng.
15: 2160–2164.
Published
2017-12-01
How to Cite
SUMARNO, Heny.
Komparasi Algoritma Klasifikasi Machine Learning Pada Analisis Sentimen Film Berbahasa Indonesia.
BINA INSANI ICT JOURNAL, [S.l.], v. 4, n. 2, p. 189-196, dec. 2017.
ISSN 2527-9777.
Available at: <https://101.255.92.196/index.php/BIICT/article/view/1184>. Date accessed: 12 jan. 2025.
Section
Articles
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.